Histone deacetylases (EC 3.5.1.98, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on a histone, allowing the histones to wrap the DNA more tightly. This is important because DNA is wrapped around histones, and DNA expression is regulated by acetylation and de-acetylation. Its action is opposite to that of histone acetyltransferase. HDAC proteins are now also called lysine deacetylases (KDAC), to describe their function rather than their target, which also includes non-histone proteins. HDACs are critical for the homeostasis of the structural transitions at the chromatin level. HDACs are conserved across evolution, showing orthologs in all eukaryotes and even in Archaea. All upper eukaryotes, including vertebrates, plants and arthropods, possess at least one HDAC per class, while most vertebrates carry the 11 canonical HDACs, with the exception of bone fish, which lack HDAC2 but appears to have an extra copy of HDAC11, dubbed HDAC12. Plants carry additional HDACs compared to animals, putatively to carry out the more complex transcriptional regulation required by these sessile organisms. HDACs appear to be deriving from an ancestral acetyl-binding domain, as HDAC homologs have been found in bacteria in the form of Acetoin utilization proteins (AcuC) proteins. Histone deacetylase inhibitors (HDIs) have a long history of use in psychiatry and neurology as mood stabilizers and anti-epileptics, for example, valproic acid. In more recent times, HDIs are being studied as a mitigator or treatment for neurodegenerative diseases. Also in recent years, there has been an effort to develop HDIs for cancer therapy. Vorinostat (SAHA) was FDA approved in 2006 for the treatment of cutaneous manifestations in patients with cutaneous T cell lymphoma (CTCL) that have failed previous treatments. Here you can see the crystal structure of the human HDAC2 in complex with a small molecule inhibitor (PDB code: 7ZZR)

#molecularart ... #immolecular ... #chromatin ... #histone ... #deacetylase ... #xray

Structure rendered with @proteinimaging and depicted with @corelphotopaint

HDAC2
Published:

HDAC2

Published: